689. Maximum Sum of 3 Non-Overlapping Subarrays
Description
In a given arraynums
of positive integers, find three non-overlapping subarrays with maximum sum.
Each subarray will be of sizek
, and we want to maximize the sum of all3*k
entries.
Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.
Example:
Input:
[1,2,1,2,6,7,5,1], 2
Output:
[0, 3, 5]
Explanation:
Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.
Note:
nums.length
will be between 1 and 20000.
nums[i]
will be between 1 and 65535.
k
will be between 1 and floor(nums.length / 3).
Discussion
Method 1 O(n^2)
区间dp[i][j] + dfs, 从选择从i-j 的最大值。
Method 2 O(n) Leet Code
构建left[], right[].
left[i], from 0 - i, the start index of max chunk
right[i], from i to n, the start index of max chunk.
class Solution {
public:
vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
int n = nums.size(), maxsum = 0;
vector<int> sum = {0}, posLeft(n, 0), posRight(n, n-k), ans(3, 0);
for (int i:nums) sum.push_back(sum.back()+i);
// DP for starting index of the left max sum interval
for (int i = k, tot = sum[k]-sum[0]; i < n; i++) {
if (sum[i+1]-sum[i+1-k] > tot) {
posLeft[i] = i+1-k;
tot = sum[i+1]-sum[i+1-k];
}
else
posLeft[i] = posLeft[i-1];
}
// DP for starting index of the right max sum interval
// caution: the condition is ">= tot" for right interval, and "> tot" for left interval
for (int i = n-k-1, tot = sum[n]-sum[n-k]; i >= 0; i--) {
if (sum[i+k]-sum[i] >= tot) {
posRight[i] = i;
tot = sum[i+k]-sum[i];
}
else
posRight[i] = posRight[i+1];
}
// test all possible middle interval
for (int i = k; i <= n-2*k; i++) {
int l = posLeft[i-1], r = posRight[i+k];
int tot = (sum[i+k]-sum[i]) + (sum[l+k]-sum[l]) + (sum[r+k]-sum[r]);
if (tot > maxsum) {
maxsum = tot;
ans = {l, i, r};
}
}
return ans;
}
};