327. Count of Range Sum
Description
Given an integer arraynums
, return the number of range sums that lie in[lower, upper]
inclusive.
Range sumS(i, j)
is defined as the sum of the elements innums
between indicesi
andj
(i
≤j
), inclusive.
Note:
A naive algorithm ofO(n2) is trivial. You MUST do better than that.
Example:
Givennums=[-2, 5, -1]
,lower=-2
,upper=2
,
Return3
.
The three ranges are :[0, 0]
,[2, 2]
,[0, 2]
and their respective sums are:-2, -1, 2
.
Discussion
Method
LeetCode
public int countRangeSum(int[] nums, int lower, int upper) {
int n = nums.length;
long[] sums = new long[n + 1];
for (int i = 0; i < n; ++i)
sums[i + 1] = sums[i] + nums[i];
return countWhileMergeSort(sums, 0, n + 1, lower, upper);
}
private int countWhileMergeSort(long[] sums, int start, int end, int lower, int upper) {
if (end - start <= 1) return 0;
int mid = (start + end) / 2;
int count = countWhileMergeSort(sums, start, mid, lower, upper)
+ countWhileMergeSort(sums, mid, end, lower, upper);
int j = mid, k = mid, t = mid;
long[] cache = new long[end - start];
for (int i = start, r = 0; i < mid; ++i, ++r) {
//注意,这里的循环在sums[k/j/t] 在一定条件下就break
//意味着start to mid, mid to end 两部分一定要sorted
while (k < end && sums[k] - sums[i] < lower) k++;
while (j < end && sums[j] - sums[i] <= upper) j++;
//这部分保证了在merge的时候,sums是sorted,因为sums[I] 是shorted
while (t < end && sums[t] < sums[i]) cache[r++] = sums[t++];
cache[r] = sums[i];
count += j - k;
}
System.arraycopy(cache, 0, sums, start, t - start);
return count;
}