410. Split Array Largest Sum
Description
Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.
Note:
If n is the length of array, assume the following constraints are satisfied:
- 1 ≤n≤ 1000
- 1 ≤m≤ min(50,n)
Examples:
Input:
nums = [7,2,5,10,8]
m = 2
Output:
18
Explanation:
There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8],where the largest sum among the two subarrays is only 18.
Discussion
Method 1
Binary Search
public class Solution {
public int splitArray(int[] nums, int m) {
int max = 0; long sum = 0;
for (int num : nums) {
max = Math.max(num, max);
sum += num;
}
if (m == 1) return (int)sum;
//binary search
long l = max; long r = sum;
while (l <= r) {
long mid = (l + r)/ 2;
if (valid(mid, nums, m)) {
r = mid - 1;
} else {
l = mid + 1;
}
}
return (int)l;
}
public boolean valid(long target, int[] nums, int m) {
int count = 1;
long total = 0;
for(int num : nums) {
total += num;
if (total > target) {
total = num;
count++;
if (count > m) {
return false;
}
}
}
return true;
}
}
Method 2.1
DP1
public class Solution {
public int splitArray(int[] nums, int m) {
int n=nums.length;
int[][] dp=new int[n][m];
dp[0][0]=nums[0];
for(int i=1;i<n;i++){
dp[i][0]=dp[i-1][0]+nums[i];
for(int k=1;k<m;k++){
dp[i][k]=Integer.MAX_VALUE;
for(int j=i-1;j>=0&&k-1<=j;j--){
dp[i][k]=Math.min(dp[i][k], Math.max(dp[j][k-1],dp[i][0]-dp[j][0]));
if(dp[i][0]-dp[j][0]>=dp[i][k]){
break;
}
}
}
}
return dp[n-1][m-1];
}
}
Method 2.2
DP2
public int splitArray(int[] nums, int m)
{
int L = nums.length;
int[] S = new int[L+1];
S[0]=0;
for(int i=0; i<L; i++)
S[i+1] = S[i]+nums[i];
int[] dp = new int[L];
for(int i=0; i<L; i++)
dp[i] = S[L]-S[i];
for(int s=1; s<m; s++)
{
for(int i=0; i<L-s; i++)
{
dp[i]=Integer.MAX_VALUE;
for(int j=i+1; j<=L-s; j++)
{
int t = Math.max(dp[j], S[j]-S[i]);
if(t<=dp[i])
dp[i]=t;
else
break;
}
}
}
return dp[0];
}